Rank-deficient submatrices of Kronecker products of Fourier matrices

نویسندگان

  • Steven Delvaux
  • Marc Van Barel
چکیده

We provide a set of maximal rank-deficient submatrices of a Kronecker product of two matrices A ⊗ B, and in particular the Kronecker product of Fourier matrices F = Fn1 ⊗ . . . ⊗ Fnk . We show how in the latter case, maximal rank-deficient submatrices can be constructedas tilings of rank-one blocks. Such tilings exist for any subgroup of a suitable Abelian group associated to the matrix F . These maximal rank-deficient submatrices are also related to an uncertainty principle for Fourier transforms over finite Abelian groups, for which we can then obtain stronger versions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-deficient submatrices of Fourier matrices

We consider the maximal rank-deficient submatrices of Fourier matrices. We do this by considering a hierarchical subdivision of these matrices into low rank blocks. We also explore some connections with the FFT, and with an uncertainty principle for Fourier transforms over finite Abelian groups.

متن کامل

Permutation Equivalence Classes of Kronecker Products of Unitary Fourier Matrices

Kronecker products of unitary Fourier matrices play important role in solving multilevel circulant systems by a multidimensional Fast Fourier Transform. They are also special cases of complex Hadamard (Zeilinger) matrices arising in many problems of mathematics and thoretical physics. The main result of the paper is splitting the set of all kronecker products of unitary Fourier matrices into pe...

متن کامل

Ela Bounds on the Spectral Radius of a Hadamard Product of Nonnegative or Positive Semidefinite Matrices

X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.

متن کامل

Bounds on the spectral radius of a Hadamard product of nonnegative or positive semidefinite matrices

X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.

متن کامل

On the Kronecker Products and Their Applications

This paper studies the properties of the Kronecker product related to the mixed matrix products, the vector operator, and the vecpermutation matrix and gives several theorems and their proofs. In addition, we establish the relations between the singular values of two matrices and their Kronecker product and the relations between the determinant, the trace, the rank, and the polynomial matrix of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006